Autonomous Robotic Lawn Mower

Consumer electronics
Computer vision
Embedded software development
Embedded hardware development
Firmware development


Mowing the lawn is tedious work. And it's a year-round project. But it doesn't seem so tedious once there is a robotic lawn mower ready to do the job for you.


A company in the consumer robotics industry was working on a robotic mower. They needed a professional company that could provide an independent design review for their first version of the printed circuit board that had been created by another electronics design company. Integra Sources' expertise and our ability to predict possible risks impressed the client so he decided to continue the development of the robotic mower with our company.

We were chosen to build peripheral device drivers for the first version of the lawn mower and then continued working on the second, more advanced version of the circuit board.


Our major goal was to develop a machine that could independently cut grass in specified areas of home gardens with minimal supervision. We achieved it by doing research, designing a robotic movement mechanism with electronic control circuitry and programming the controller.

We went through several iterations to build the electronics and develop firmware for the robot so it could meet the customer's expectations. The main challenge was to keep within the budget for hardware components. Our client wanted to make the lawn mower accessible to the mass market. Therefore, it needed to be cheaper than its competitors.

"Integra delivers what they say they’re going to deliver. I’d say their flexibility is their most impressive feature. They can do the whole stack, from very low-level analog circuits all the way up to and through complex digital circuits and software."

CEO of Robotics company

Prototype assembly process

Technologies Used

STM32F4 series MCU with Cortex-M4 core was used for this project.
FreeRTOS was used for firmware development.
Microsoft Visual Studio with Visual GDB plugin was used for firmware implementation.
CMOS sensor (camera) with DVP bus was used.
The device can connect to the cloud (server) using WiFi or 3G connection.
The first prototype of the device has a wireless module NRF24L01 to communicate with the base station and LCD with touchscreen for GUI.
For precision positioning, GPS, accelerometer, gyroscope, compass (magnetometer) and computer vision algorithms are used.
Altium Designer IDE was used for Schematics and PCB design.
The firmware was implemented using C/C++.


Integra Sources managed to put the project on solid technical footing while lowering the estimated cost of the development effort required. We provided hardware design, prototyping, firmware development, and testing.

The delivered result is a fully completed hardware solution for an autonomous robot that doesn't need any supervision. The robotic lawn mower is equipped with algorithms and sensors – camera, accelerometer, gyroscope – that allow the robot to map the area it's about to work on. It's also equipped with a charger and a Wi-Fi and 3G module.

To set up the area of operation, you just need to walk around the lawn with the robot so it remembers where to work. After that, it is ready to cut the lawn’s grass 24/7 and will charge itself when it runs out of battery.

Make some noise

One of the test prototypes

Scope of work

Implemented OpenCV based computer vision autonomous navigation system

Developed hardware for the robot

Developed firmware

Make some noise

You might also like...

A Ready-To-Fly Quadcopter

The quadcopter is 10x10 centimeters in size. It can be controlled over a Sony PlayStation 2 gamepad or any other compatible wireless gamepad


Programmable Robots for Education: 3 Case Studies on Custom Software and Firmware Development

The project was delivered for DaVinci Labs. We implemented custom hardware and software development for Lego Mindstorms EV3 and Makeblock MeAuriga robots


We use cookies to improve your experience on our website. Our Cookies Policy explains what cookies are, how we use cookies and how third-parties we may partner with may use cookies. Please find more information here.